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I. Introduction

A. Origin of Problem

Suppose there come into your possession one or more
"black boxes" and the infermation that these are linear. Why
would you want to determine their impulse responses, and how
would you go about it?

A fairly literal case would be that you had purchased
the systems "impulsively" at a surplus shop, and discovered
that the innards were potted so as to make direct inspection
impossible. It would then be desirable to measure the impulse
response or the transfer function (its Fourier transform) of
each system to determine how it could be utilized.

In a ballistic missile defense (BMD) context the linear
systems in question may model how projectiles of interest to the
defense, re-entry vehicles (RV's), decoys, chaff particles, etc.
respond in time to the voltage waveform transmitted by a radar.
One of the defense functions is discrimination - the task of
determining which targets must be acted against and which are
there to confuse or saturate the defense. One of the methods
for doing this is to utilize differences in the size or shape
of the targets. Direct inspection is again impossible, so the
received radar waveform is used. Sizing a target along the
radar line of sight amounts to explicitly or implicitly

determining and then further operating on the impulse response
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of a linear system. If the processing technique extracts an
estimate of the target extent along the line of sight it is
referred to as "length measurement." If the processing makes
more implicit use of the impulse response it is a particular
application of a technique called "pattern recognition." 1If
sizing is also carried out in the cross-range direction using
Doppler processing the technique is referred to as "imaging."
We will restrict ourselves in what follows to the one-dimensional

case.

B. Deterministic Sigpal Approach

Having decided that you want to determine an impulse
response, how do you proceed? The basic procedure is to drive
the system with a test signal, observe the response and process
it, the processing depending on the test signal. The most
obvious approach is to "pulse" the system. A deterministic

pulse narrow with respect to the system response time (widebagd

‘with respect to the system bandwidth) is applied, and the

resulting output signal is taken as an estimate of the impulse
response, albeit somewhat smeared and distorted. Choosing an
appropriate pulse bandwidth requires prior knowledge about the
system or a trial and error procedure.

In principle, the effects of finite pulse bandwidth and

detailed pulse-shape can be removed either in the time or




frequency domains, yielding the "true" impulse response. In
practice the degree to which this can be done is limited by
interfering noise, and while the effect of interfering noise is
the main subject of this report, it is assumed that this pro-
cessing refinement is not involved.

In the frequency domain the unknown transfer function
could be traced out by applying a sinusoid to the system and
varying its frequency. The use of a pulse waveform can be
thought of as a way of simultaneously applying frequency
components to the system. This report will deal with the time
domain version of the problem.

What if we allow the simple pulse to be less simple?
That is, what if we employa signal having the desired bandwidth
but a time-bandwidth product greater than unity? The basic
reasons for employing such a waveform in radar practice are:

(i) the presence of interfering noise originating within the
radar receiver and possibly also from electronic countermeasures
(ECM), external jamming sources employed by the offense to screen
targets from the radar (ii) that the achievable signal-to-noise
ratio or radar sensitivity depends on how much energy can be
packed into the radar signal (iii) and that radar transmitters
operate under a peak power level constraint.

Thus a modulation such as linear frequency modulation

(LFM) , or binary phase shift coding is utilized to increase the
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signal duration and hence energy while maintaining the bandwidth
needed for resolution. The receiver processing must now change
from a simple observation of the returned pulse shape for two
reasons.

Firstly, this pulse-shape no longer looks almost like
the test impulse response, due to the longer signal duration.

To correct this the signal bandwidth must be utilized to achieve
its inherent time resolution. The conventional way of doing this
is to convert the radar signal into a signal having a unity
time-bandwidth product by matched filtering, i.e., by convolving
the received signal with a time-reversed replica of the trans-
mitted signal. It is well known that matched filtering generates
the autocorrelation function of the signal in question, which in
fact has a central "spike" whose time duration is the reciprocal
of the signal bandwidth. The overall effect is that of having
transmitted a "narrow pulse," the autocorrelation function of

the signal, and taken the response of the unknown system to this
waveform as an estimate of its impulse response.

Secondly, the receiver processing must take into account
the interfering noise which dictated the use of a time extended
modulated signal from an energy standpoint. Basically the
receiver will reject noise outside the signal bandwidth, and
secondarily it will employ an optimized passband shape to

maximize the signal-to-noise ratio. In other words, it will




employ the same matched filter that was required to achieve the
desired resolution from the radar signal.

The above paragraphs have described how a conventional
pulse compression radar would be used to measure an impulse
response. In the analysis to be described in Section II, a
scalar or baseband (rather than complex or bandpass) model is
used for the time domain signals and systems. Thus in the
pulsed case the details of a phase modulated pulse compression
radar are not modeled. Rather the transmitted signal is
thought of as a "narrow" pulse whose time-bandwidth product is
approximately unity, and the receiver as employing a filter
matched to that signal. This simplification in no way compromises

the applicability of the results to a "real" radar system.

C. Random Signal Approach

Let us now shift to a consideration of random signals
and their possible application to impulse response determina“’ ,n.
As we have noted, the use of a pulse signal can be thought of
as a way of simultaneously applying many frequency components to
trace out the unknown transfer function. Can a random process
be used to perform this function, and if so why would it be
desirable to use one? The familiar stationary "whitish"
Gaussian process so often employed in radar analysis can be

assigned a power spectrum which extends considerably beyond the




passband of the unknown transfer function and is relatively flat
within the passband. Thus in an ensemble sense the random
process can apply frequency components to trace out the transfer
function.

The power spectrum of the output process is a tracing
of the magnitude squared of the unknown transfer function. This
would be sufficient to determine a real, even impulse response,
which has a real (and even) Fourier transform. A more arbitrary
real impulse response with both odd and even components will
correspond to a complex valued transfer function whose magnitude
and phase must be traced out. The appropriate tracing is the
cross power spectral density between input and output. Since
this function is the product of the input power spectrum and the
unknown transfer function, the use of a random signal with a
whitish power spectrum will produce a cross-spectrum which
essentially replicates the transfer function in magnitude and
phase.

The corresponding relationship in the time domain is
that the cross-correlation function between input and output of
the impulse response is equal to the input autocorrelation
function convolved with the impulse response. This provides

the basis in an ensemble sense for determining the impulse

response using a random signal. If the autocorrelation function

of the random signal is narrow relative to the impulse response




"duration" the cross-correlation function is a slightly smeared
tracing of the impulse response.

In practice, what would be available for impulse
response determination is a finite time segment of a particular
sample function of the random process. Operationally, an
"ergodic" assumption would be made, and the time cross-correlation
function between the available segments of the input and output
sample functions would be treated as the impulse response

estimate.

D. Relationship of Approaches

We can now note a striking similarity with the use of
the deterministic signal. In either case the received signal
is cross-correlated with a replica of the transmitted signal.
The resulting waveform is then the desired impulse response
smeared by the auto-correlation function of the transmitted
signal. So what then is the difference between using determin-
istic and random signals? In our view, there really isn't any,
and there are several ways of looking at it.

Suppose first that a given segment of random process
sample function, once generated, is utilized over and over
again every time the radar attempts an impulse response

}' determination. In this case the fact that the radar signal was

f! originally generated by a random process becomes irrelevant.
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It is now a deterministic signal. In practice its :ime duration
would be long relative to its correlation time, and the operation
of correlating it against a replica of itself would "pulse
compress" it to a narrow spike whose width was the correlation
time, riding above a sidelobe structure. The whole operation
would closely parallel how things would go with a signal that
had been obtained by deterministic means. A binary phase-coded
pulse compression signal for example is really just a stylized
version of a sample function of a continuous random process in
which the process can change states abruptly after =very
"correlation interval" rather than continuously. The fact that
such signals are often referred to as "pseudo-random" or "noise-
like" reinforces the comparison.

The other possibility is that a segment of a new sample
function is utilized each time the radar makes an impulse
response determination. There would now be some variabilitv
due to the signal itself, but not a variability that seems
significant. Stated differently, "most" sample function
segments are equivalent if their time durations are long
relative to the correlation time. That is, most sample functions,
when correlated against themselves, will produce an essentially
identical correlation function. There will be minute differences
in the exact shape of the central spike and the details of the

sidelobes, but in most cases the resulting impulse response
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estimate will be essentially unaffected.

If this line of heuristic reasoning seems at all
convincing, one must ask why the notion has persisted that
the use of a random signal has an advantage in impulse response
determination. The answer is basically as follows. In the
random signal case the operation was explicitly recognized as
a cross-correlation operation. This led to the idea that any
interference which was "uncorrelated" with the random signal
would be suppressed when the signal and interference were
cross-correlated. The textbook by Y. W. Lee(*) popularized
this notion as far back as 1960. There are several problems
with his discussion of this topic. Foremost is the fact that
he apparently did not recognize that the "conventional" or
deterministic signal method was really just as much of a cross-
correlation method as the "novel" or random signal method.
Secondly, he did not really deal with the fact that an uncorre-

lated disturbance will not completely vanish when subjected to

a finite-time cross-correlation. The degree to which the k

s

interference would be suppressed was not examined and a

comparison with the "old" method was not made.

*
Y. W. Lee, Statistical Theory of Communication
(John Wiley and Sons, New York, 1960).
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The purpose of this introduction has been to engender

an expectation that if the two methods were compared on the
basis of equal utilization of resources such as energy

and bandwidth, they would have essentially the same performance.
A comparison has been carried out analytically, described in the

following sections, which bears out this expectation.

IT. Analysis

A. Framework

1. Performance Measure

Before proceeding with an analysis of each method and
a comparison between them, we must establish a performance
measure which will be the basis for comparison. Using either
method, the impulse response estimate at any point on the true
impulse response will be a random variable. 1In the deterministic
signal method this is due to the interfering noise process, and
in the random signal method it is due both to the interference
and to the randomness of the signal itself. Thus the most
general description of the estimators would be their multi-
dimensional probability density functions at n points along the

impulse response. If the ultimate goal is to describe how some

10




discriminant which operates on the estimated impulse response
performs, the number and location of the points at which the nth
order density functions are evaluated would depend on the
particular discriminant. For a length measurement, a few points
near the front and back of each vehicle class might suffice if
the signal/interference ratio were above a certain value. For

a pattern recognition approach, points spread across the full
extent of each impulse response might be necessary.

We do not want to consider specific discriminants in
this study. To avoid doing so, we choose as a performance
measure the normalized variance of the impulse response
estimates at any point along the response. The notion is that
any discriminant will benefit if this measure is small. We
are saying that we want "most" of the random estimates produced
by a given estimator to lie in a "narrow" (in a percentage
error sense) band about the true impulse response pattern. We
don't particularly care whether an estimated pattern looks as
shown in Figure la, wherein the estimation errors quickly
decorrelate across the pattern, or as shown in Figure 1lb,
wherein the errors are highly correlated across the pattern.

Thus our performance measure is a first order statistic.

11
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2. Model Considerations

In what follows, expressions are simplified if we
calculate the normalized variance at certain "typical" points
on the pattern, although the calculation can be made at any
desired point. Simplification is also gained if the impulse
response is assumed to have even symmetry. Again the restriction
is made just for convenience. The analysis has been carried
out for continuous impulse responses described by any one of a
number of unimodal shapes. These include Gaussian, sin x/x,
cusped exponential, and rectangular. The same shapes were
used to describe the deterministic measurement signal and the
auto-correlation function of the random measurement signal.
The functional form of the results does not depend on the
shape chosen in the operating regime of interest (see below).
Only form factors such as m,v/2, etc. change. The specific
results in this report will correspond to the Gaussian shape
assumption, and the typical point at which they are evaluated
is the peak of the impulse response so shaped.

In addition to the basic results for an impulse
response described by a smooth curve, some results are
presented for an impulse response described by either one or a
pair of impulses. The single impulse case corresponds to a
point target model, and the results provide some insight in the

continuous case. The impulse pair model, for which results




are similar, corresponds to a situation in which resolution can
be achieved between target features in an operational sense, but
the bandwidth of the received signal is still determined by the
transmitted signal bandwidth, not the target bandwidth. Such a
model applies to a vehicle which generates radar returns
primarily from a tip and a base such that the "rise time" of

the signal is unaffected by the target at any signal bandwidth
being considered. The typical point selected in the point target
case is the location of the single impulse. In the impulse pair
model two typical points are selected, one at an impulse

location and one midway between impulses. Figure 2 illustrates

the three cases.

3. Operating Regime

The results which follow below correspond to a certain
operating regime for some of the basic time and bandwidth
parameters involved. This regime is defined by the requirements

that:

(i) the resolution of the estimate be somewhat finer
than the time scale of the impulse response

(ii) the estimate be generated over a significant
portion of the impulse response extent.

In our basic case of a continuous impulse response the

first requirement amounts to saying that the signal bandwidth

14
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'shifting the data by Thp. If the signal is transmitted and the

must be somewhat larger than the bandwidth of the system being
measured. If we denote suitably defined signal and system
bandwidths by W and Wh respectively (subscript "h" for impulse i
response h(t)), then we require that w:»>wh, where a reasonable
operational definition of :8>Wh is >10 W, . Rather than describing

h
the system by a bandwidth W,, we can describe it by a suitably

h
requirement then becomes WT,>>1. In our impulse pair model,

defined impulse response extent Th’ where W, T, ~ 1. The .3

the system bandwidth Wy is infinite but Ty is still meaningful
and the requirement to cleanly resolve the pair of impulses is j

again expressible as WT, >> 1.

The second requirement concerns the amount of data that
must be processed and is most easily described from the viewpoint
of the random signal method. Imagine the time origin to be
centered under the impulse response. The estimate of h(o) is
then the cross-correlation between the transmitted and received
waveforms at zero shift (propagation delays having been removed).

To generate the estimate a distance Ty from the origin requires

data sample collected over +T, estimates can be generated only
out to +T along the impulse response. Thus at the very least,
T=Tp. Further, unless the time window is somewhat longer than
this the data falloff will be excessive and the window function
will unduly affect the estimate at shifts approaching Tj. It

is clearly desirable to require that T >> Ty, or W,T >> L




It then follows from the first requirement that WT>>1 will also
characterize the operating regime. The estimation accuracy
expressions that result from an analysis taken to these limits
on the parameters will show that desirable parameter settings
from an accuracy viewpoint are consistent with the regime

described here.

B. Random Signal Method

The random signal method can be described up to a point
without specific reference to the form of the impulse response.
The transmitted signal is a finite time segment of a sample
function x(t) of a real zero mean Gaussian random process. The
signal exists for |[t| < T, and a different sample function is
used each time the radar makes a transmission. The power

spectrum of x(t) is assumed to be
S (£) = N_ expl-(£2/2w?)] (1)
X X

with peak spectral height Nx. The bandwidth parameter W has
been chosen as the "standard deviation" of the Gaussian shape
of the spectrum. The corresponding autocorrelation function of

x(t) (Fourier transform of Sy(f)) is

E[x(t)x(t+T)] = Rxx(r) = V2T WNy exp[-(Zﬂzwzrz)] (2)

17
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where E[+] denotes expectation. For large W, x(t) approaches

white noise of spectral height Ny and

R, (1) > Nyug (1) (3)

where u°(°) is the unit impulse. The average power in the

process x(t) is
Rxx(O) = m WNx (4)

so that the average energy in a segment of x(t) 2T seconds

long is

Ey = 2 /2T WINg (5)

a relation that will be used later
The reflected signal y(t) is the segment of x(t)

convolved with the unknown impulse response h(t):

T

y(t) = f x(§} h{t=£) 4& (6)
=T

The received signal is

z(t) yit) + nit) (7)

18
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where n(t) is the interfering noise process, assumed to have
the same statistics as x(t), to have spectral height N, rather

than Ny, and to be statistically independent of x(t) so that

Elx"(t) nd(e+0)] = E[xF(t)] Elnd(e+1) 1, any k,3,T (8)

The estimator of h(t), found by cross-correlating
z(t) with the transmitted segment of x(t) is

it

hio) =ﬁ— f x(£) z(t+1) At (9)
-T

where propagation delay to and from the target has been taken as
zero. To calculate the mean and standard deviation of h(t) we

must make some assumptions about h(T).

1. Continuous Impulse Response

Assume that h(t1) is a smooth curve qualitatively
described by an effective time duration Ty and corresponding

bandwidth Wy, where

W Ty ~ 1 (10)

19
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Then using Equations (6) through (9) one can show that

T T

T ~£
R (V)h(v+1) dv dg (11)

ERD] = o f
¥ g=-r v {~T=E)

If we then assume that Rox is narrow with respect to h, i.e., .

that
WTh = W/Wh >> 1 (12)
then (3) can be used to obtain

F E[h (1) ] ~ h(1) (13)

so that h is an unbiased estimator of h.

A

The variance of h is

Var(h(1)] = E[(h(1) - A(1))?2] (14)

f One proceeds by plugging (9) and (1l1) into (14). Appendix A I3
; describes what comes next. It involves such things as recognizing
that a product of two multiple integrals can be written as a

b higher order integral by introducing additional dummy variables,

the use of (8), and the use of the "moment theorem for Gaussian

variables," which allows one to express the expected value of

- e

a product of three or more variables as a sum of expectations

20




of products of two variables at a time. The result is that the

desired variance can be written as:
Var(h(1)] = Var [h(1)] + Var [h(7)] (15)

The Vary term depends only on Rxx(r) and bh(rx). Tt
represents the variability in the estimate due to the randomness
of the transmitted signal, and persists even if{ there is no
interference whatsoever. The Varn term depends only on Rxx(r)
and Rnn(r), the autocorrelations of the signal and the interfer-

ence. It corresponds to the fact that when the interference

is cross-correlated against the transmitted process for a finite

time the result has an expected value of zero, but a non-zero

variance. The two terms are described in more detail below.

a. Vary Term

If we again set WTp>>1, assume for convenience that h(rt)

is even, and evaluate the variance at the typical point 1=0, we

obtain
i T-£
Varx[h(o)] T f f h™(v) dv dg (16)
2T
£==T v==T=¢

Next assume that h(t) is also Gaussian shaped and write it as

2 2
h(t) = h exp[-(21rwhr) ] ()

21




With this convention, the power transfer function of the target

(magnitude squared of Fourier transform of h(T)) is

2 . 2 2 2
|H(E) |[© = H,® expl[-(£7/2w, )],
(18)
2
2 ho ]
Ho = 2
4TrWh

A comparison with (1) shows that the bandwidth parameters W and
Wh have been defined consistently. That is, the random pro-
cesses x(t) and n(t) can be thought of as white noise passed
through a filter with a Gaussian shaped passband |Hx,n(f)|2
whose "variance parameter" is w2, while the target is a filter
with Gaussian shaped passband |H(f)|2 whose "variance parameter"”
is th. The generic parameter Tp used above can be thought of

as ~ 1/Wy. Using (17) in (16) and setting WyT >> 1 results in

a normalized variance given by

Varx[ﬂ(o)] 1 _i_

> (19)
h* (o) 2/27 W,.T

22




where the first factor would vary if the definition of bandwidth
or the shape assumed for h(t) changed, and the second factor
expresses the fundamental dependence involved. Equation (19)
has an interesting interpretation that will be deferred to

Section B-2 below.

B Varn Term

This term results when the procedure described just

before Equation (15) is carried out. It corresponds to the

expectation
T
E 2[‘2—,1,%; f x(t)n(t+t)dt ]zz
=5
I
= E[E-;;N—z j] x(t)x(E)n(t+T)n(&+71) dtdg} (20)
. =T

If the expectation of the integrand is taken, the independence
of x and n invoked, and the variable p=f-t introduced, the

result is

Varn[h('r)] 1 j_ 7t
———— s e R,_(0)R__(p)dgdt
h2(o) hoz '4T2Nx2 e XX nn

(21)

23




If (2) is then applied and the result evaluated for WT >> 1 we

arrive at the normalized variance

Varn[ﬁ(o)] JrOW
— —_— e (22)
2 T

hz(o) Nx

where we have let ho=l. This entails no loss of generality if
we think of N, as representing the transmitted power level
modified by radar range equation factors, one of which is
target cross-section level, i.e., ho. Finally, if we apply

(5), the result can be written

var. [hio)] 2
— = RN (23)
h” (o) Ex/Nn

These results can be interpreted readily for either form (22) or
(23). To understand (22) one can go back to (20) and think of
the integral as a sum of independent random variables, 4TW in

5% in time, each being the product of a
sample of x, a sample of n, and the spacing factor 1/2W.

number, spaced by

Squaring the sum, taking the expectation, and using (8) results
in a new summation in which each term contains the expected value
of the square of a sample of x times the square of a sample of n.

Applying (4) then results in

24
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/ —
var = (24)

N
&
=]

which agrees with (22) to within a factor of /7, the difference
corresponding to the fact that the integral form is evaluated
for the actual Gaussian shape of the correlation functions while
the summation form uses a rectangle approximation. If we then
write the factor W/T as W2/TW we see that Var; is directly
proportional to w2, inversely proportional to TW, and inversely
proportional to Nx/Nn- These factors are respectively the
bandwidth dependence of the variance of each term in the
original sum, the dependence of the number of independent
samples on time and bandwidth, and the power ratio of the
"signal" and interference samples. These identifications
constitute our interpretation of (22).

Regarding form (23), the inverse dependence on a "signal
energy to noise power density" ratio is not surprising since we
are dealing with the normalized variance of a signature amplitude.
The increase of variance as w2 results from the fact that we are
operating with W>>W, to achieve resolution. One factor of W
corresponds to a loss of energy outside the nominal target
bandwidth Wh. The other factor of W corresponds to a mismatch
loss at the receiver because the receiver must operate with

bandwidth W to achieve the resolution while the power bandwidth

25




of the received signal is essentially W

h This explanation is

repeated more thoroughly in Section II C-1 below.

2. Impulsive Impulse Response

In this section we no longer think of h(t) as being a
smooth curve but rather assume that it is composed of either one
or two impulses. As discussed in Section II A-2, the single
impulse represents an idealized point target, and provides a
comparison with the continuous case. The two impulse model is
guite similar, and represents a target that returns from a "tip"
and a "base" with essentially no broadening of either return at
any operating bandwidth being considered. The two models are
shown in Figure 3a. For simplicity the two impulses are
assumed to have equal areas and to sit symmetrically about the
time origin.

Equations (1) through (9) and (11) still apply.
Studying (11) indicates that in the point target case the
expected value of the estimate follows the shape Ry, (1), which
is a "narrow" continuous pulse with width inversely proportional
to W rather than a spike. In the two impulse case, E[ﬁ(r)]
looks essentially like a pair of offset replicas of Rxx(T).

If 1/W is small compared to the impulse spacing, i.e., if WTh>>l,

the two peaks are well resolved and E(h(t)] looks like a pair




of "narrow" continuous peaks. Figure 3b shows these curves.
If we proceed from (11) using (2) and assume that WT, >>1

and WT >>1, we obtain

E[h(1)]

/2m Why, T at an impulse location
(25)

E[h(7)] 0, Tt "far" from an impulse location

where hy is the area of each impulse. The first of these

values will be used to normalize the variance terms to follow.

a. Varx Term

\

Equation (15) still apélies, stating that the variance
of the estimate is the sum of a Vary and a Var ~term. However,
the vary term is no longer given by (16). The problem must be
reworked starting with (11) and (14) as in Appendix A. If this
is done utilizing (2) and the model of Figure 2a, assuming that
WTh and WT are >> 1, and letting ho be unity, we obtain in the

point target case

var_[h(T)] 1
= 3 = — at impulse location
(Efh(o)]) 2 /TWT
(26)
= l “f " f 3 1
= I7WT ar rom impulse
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In the two impulse case we obtain

var (h(1)] 3
ey T ——— at impulse locations
(E[h(T})]) 4 /T WT
(27)
1 7
TRt between impulses

The slight differences in the numerical coefficients can be
explained but we will not digress to do so here. The interesting
thing to observe is the inverse dependence on time-bandwidth
product. The product WT is proportional to the number of
independent samples of the transmitted process x(t) in the time
interval (-T,T). Since an impulsive impulse response does not
limit the bandwidth of the reflected signal y(t), the product
x(t)y(t) is essentially proportional to x2(t) and still has

on the order of WT independent samples. Equations (7) and (9)
indicate that Vary is the estimate variance with the noise

n(t) set to zero, which is proportional to the variance of
essentially an average of a set of samples of x2(t). In
normalized form this varies inversely with the number of
independent samples involved, i.e., WT. The result can be
verified by approximating the integral in (9) by a sum of

independent samples, as we did in Section II B-1-b above.

29




Now compare these results with those for the continuous
impulse response, Equation (19). We see that basically where W
appears in the impulsive result, W; appears in the continuous
result. What is happening is this. 1In the continuous case,
under the assumption that W >> Wy, the bandwidth of the reflected
signal y(t) is limited to W, by the frequency response of the
target. Thus the number of independent samples of y(t) available
is proportional to th’ not WT, and this change carries through
to the result (19). Again, this inverse W, T dependence can be
verified by a discrete summation approach, although it is
slightly more complicated than verifying the WT dependence in

the impulsive case.

b. Varp Term

Sine the Varp term comes about from cross-correlating
n(t) with a replica of x(t), it does not depend on h(t), and
hence in un-normalized form is unchanged from the continuous
case. However, the normalized form, which is what counts, will

change in accordance with (25), and becomes, using (22) and (25),

Varn[ﬁ(r)] SR G
— - — o (28)
(E(h(t ) ]) 4/7 WT Ny
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which, using (5), can be written

var_[h(r)] "

E, /N

(29)

Nlh

(Elh(r)])?

n

where T, represents the location of an impulse in h(7).
Comparing (29) with (23) we see that the growth of
variance with bandwidth no longer occurs in the impulsive case.
This is because the target frequency response no longer limits
the bandwidth of the reflected signal and causes energy loss
and mismatch at the receiver. Again, this point will be made

more explicitly in Section II C-2 below.

C. Deterministic Signal Method

The basis for the deterministic signal method is
shown in Figure 4. The transmitted signal s(t) is to be
thought of as a real "narrow" pulse with energy E given by

oo

E = fsz(t)dt (30)

[}

To remain consistent with Section B, the signal will be assigned

the Gaussian shape

s(t) = s_ expl-(2rWt)?] (31)
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with Fourier transform
S(£) = s_ expl-(£/2W)?) (32)

where one can show that
g, = 41W SO = /81 EW (33)

The fact that the signal extends to infinity and that the
convolutions to follow are carried out with infinite limits is
not significant. The same analysis has been carried out with
signals and filters having finite time extent, rectangular
shapes for example, with no change in the basic dependences,
merely form factor variations. Truncating the Gaussian shapes
used here would change the results negligibly while introducing
much nuisance value into the analysis.

The reflected signal y(t) is s(t) convolved with h(t),

or

y(t) = / s(E)h(t-£)dE (34)

which will henceforth be denoted by s(t)()kut). The received

signal is

z(t) = y(t) + n(t) {35)
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which is then passed through a receiver filter whose impulse
response is hR(t) resulting in a waveform which acts as the

estimate of h(t). Thus,

h(t) = 2(0) @hg(t) = s(8) h(t) @hg(t) + n(t) @hglt)

m(t)

(36)

The interference n(t) is as assumed in Section B, with Gaussian
shaped spectrum S, (f) and autocorrelation R“n(r). Equations

(1) through (3) apply with N, replacing Ny. The receiver filter
135 taken to be a filter matched to s(t), and therefore has an

impulse response proportional to s(-t). Thus we can write

X : 2

hR(t) = hRo expl[=(27Wt) 7]

Hp(f) = Hyp expl-(£/2W) ) (37)
2 A

hRo = 41W HRo

We can now calculate the mean and variance of h(t) for the

continuous and impulsive impulse response models.

1. Continuous Impulse Response

Assume again that the target impulse response is




—

o A ST

—r——

Gaussian shaped with bandwidth parameter Wh, as described by

Equations (17) and (18). From (36) we can write

E(h(£)] = s(t) ®h(t) @hg(t) = s(t) @hy(t) @h(t)

From (21), (32), and (37) we can write

s(t) @hg(t) = VIT WS H expl~{/IvRE) 2]

For large W,

s(t)@hR(t) + S H . m (t)
Thus, if W>W,, we can write using (38) and (40),
E[h(t)] = SOHROh(t)
Using (36) we can write

oo

Var[ﬁ(t)l = E(mz(t)] = Rmm(o) = f Sm(f)df

0o

(38)

(39)

(40)

(41)

(42)

where m(t) is the noise at the output of the receiver filter,

Rmm(r) is its autocorrelation and Sm(f) is its power spectrum.

Therefore
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o0

var(h(t)] =/Sn(f)[HR(f)l2 af (43)

fee]

This evaluates to

varlh(t)] = /7 wnpt, > (44)

and using (33) and (41l), letting h,=1, and W >> Wy, we can write

A = 2
Var[h(O)]2 = ¥2 m W (45)
(E[h(0)]) E/N

To understand this result, consider the "narrowband"
limit W <<wh. In this case the only effect of convolving
(s(t) @hR(t)) with h(t) is to multiply (s(t) ®) hg(t)) by the
amplitude of the target frequency response at zero frequency,
namely Ho. Thus from (38) and (39) we can write

P

E[h(o)] = /Tn‘wsoHROHO (46)

and using (44), (46), (33), and (18), and letting ho=l, we

obtain the normalized result

Var[ﬁ(o)] » 2/§nwh? (47)
(E(h(o) 1) 2 E/Np
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Thus the ratio of the normalized variances in the wideband and

narrowband limits is

Varnb 2 Wh
i
]
Two effects contribute to this result. 1In the narrowband case
the receiver is matched to the reflected signal y(t). In the

wideband case the bandwidth of the reflected signal has been
limited by the target, while the receiver operates wideband to

match the transmitted signal. Thus excess noise enters the

receiver relative to the matched case, the effect being
proportional to W/Wh. The other effect is that the target
rejects most of the transmitted energy outside its nominal
bandwidth Wy . Energy must be transmitted "out of band" in
order for the expected pattern of the estimate to contain the
desired detail or resolution, but most of this energy is lost :
from the standpoint of the variability of the estimate. This
effect is also proportional to W/Wh'

We see then that "too much" bandwidth is a bad thing,
using either the deterministic or the random signal. If you
ask for more resolution or detail than you really need, a

noisier estimate results.
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2. Impulsive Impulse Response

Assume again that the target impulse response is not
a continuous curve, but contains impulses. For simplicity, the
single impulse or point target model will be treated. Thus

h(t) is taken to be

h(t) = houo(t) (49)
Then from (38) we can write

E[h(t)] = h s(t) ®hg(t) (50)

which says that the expected shape of the estimate, ideally an
impulse, is the shape of the pulse at the output of the receiver
filter. Applying (39) and (33) we get

Da 2 22

(E[h(0)])2 = 21 W s, 2a, *n % = /77 Ewng %h_ (51)

The un-normalized variance is still given by (44), and the

resulting normalized expression is

(52)

var(h(o)] _ v3 _1
(E[h(0)])? >




III. Conclu

sions

In Section I we addressed heuristically the question

of whether the use of random rather than deterministic signals

had any advantage for impulse response estimation.

In Section

II we defined an objective basis for making the comparison,

carried the comparison out, and developed some insiaght into the

results.

learned and briefly comment on it.

In this section we will summarize what has been

The basic performance expressions derived are brought

together in Table 1 below.

TABLE 1

NORMALIZED VARIANCE OF IMPULSE RESPONSE

ESTIMATE

CONTINUOUS IMPULSE RESPONSE

IMPULSIVE I

MPULSE RESPONSE

VARIANCE DUE

VARIANCE DUE

VARIANCE DUE

VARIANCE DUE

TO TO
TO SIGNAL |INTERFERENCE | TO SIGNAL | INTERFERENCE
RANDOM 1 3 o " ey
SIGNAL 2/7% W, T " E/N 2/ WT 2 E/N
DETERMINISTIC /3 w? NONE V2 1
NONE I g > B
SIGNAL y n
|
|

q
|
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These results apply in the limits on time and bandwidth pre-

viously discussed, and the numerical coefficients correspond
to the Gaussian shape assumptions and definition of bandwidth
made. The important point is that bandwidth has been defined
consistently in the sense that a given value of W implies
exactly the same resolution or detail in the expected estimate
in either the deterministic or the random case.

The table shows clearly what the answer is regarding
the central question addressed in this report, namely the
relative ability of the two methods to suppress uncorrelated
interference. Their performance is identical for either type
of impulse response model when they employ equal resources such
as bandwidth, average energy consumption, etc.

As described, the random signal method experiences an
additional variance component, although this can be reduced to
a desired level by adjusting the parameters. Alternately one
can select a particular realization of the random process and
use it repeatedly as a radar signal just like any other
deterministic signal, e.g., LFM, binary phase coded, etc.

Finally, we have pointed out that with either type of
signal the use of "excessive" bandwidth carries with it the
penalty of a more variable estimate. This should be kept in
mind in discrimination applications where achieving fine resolution

on the shortest targets in question may in fact be unnecessary or

even undesirable-




APPENDIX

The purpose of the appendix is to describe in somewhat
more detail than was appropriate in Section II how some of the
variance expressions are arrived at. In the random signal case
we start with equation (14) giving the definition of the

estimator variance as

var(h(1)] = Eh(1) - A(1))?] (a1)

Using the definition of h(t) from Equation (9),

b3
Bee) == f x(t)z(t+1) dt (a2)
7

the expression given in (11) for the expected value of h(rT),

I T- &
Elh(t)] = L / / Rxx(\))h(wrr)dv dg (A3)
: 2TN SR

X gE=~T

and the signal relationchins from (6) and (7),

z(t) = y(t) + n(t) (n4)
IT\
and y(t) = J/. x(£) h(t=E) df (AS5)
=

PEp——



we can write

=L
£ 31
h(1) - A(1) = - [x(E)x(E+v) = R, (V) ]1h(v+1)dvdE
£&=-T v=-T-¢
(a6)
T
P x(p)n(p+T)dp .
2TNy fid Sl
=T
Think of the first (double) integral as a term "A" and the
second integral as a term "B". Then the square of the left
side of (A6) is equal to (A+B)2 which equals A2 + 2AB + B2.
The "A2" term is the square of the double integral and can
therefore be written
15 T-£ T T-t
3 e [% (£) X (E+v) =Ry (V) ]
ar?y_? o
X E=-T v==-T-¢ t=-T p=-T-t
(a7)
(x(t)x(t+p)-R, (p)]1 h(v+T)h(p+t) dEdvdtdp
The "BZ" term is the square of the single integral and can
therefore be written
E &
B? = 21 2 [/ x(p)x(t)n(p+t)n(t+t)dpdt (a8)
4T Ny, o
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The cross term "2AB" is the product of the single and double

integrals, which can be written

T=E

Y e
2 1 J/' ,/ﬁ
2AB = ————— [x(E)x(£+v)=R__(v)]
2T2Nx2 / xx

g==T V==R=F p==T
(A9)

x(p)n(p+t)h(v+1)dpdude

The expressions (A7) through (A9) comprise the quantity
[ﬂ(r) - E(Q(T)]z. The variance of ﬂ(r) is then the sum of
their expected values. In each case, the expectation is moved
inside the integral. The first thing we note is that because of

the independence of x and n, the entire integrand in (A9) is

proportional to E[n(p+T)] which is zero (see Equation (8), Section

II B). Thus (A9) contributes nothing, and we have only (A7)

and (A8) to consider.

The expected value of (A8) is the Var, term. If we make

the change of variables &= p-t, we can rewrite (A8) as

Varn[ﬁ(r)] = ; 5 Elx(t)x(t+&)n(t+T)n(t+1t+£) ]

(A10)




i
!

Again using (8) because x and n are independent, we arrive at

N
var_lh(1)] = ; : f R (E) R__(£) dedt  (All)

XX
8y e emet

This is the basic result for Varn. If we substitute the
particular Gaussian shapes assumed in Section II for Ryyx and

Ryns the integration can be carried out in closed form, resulting

in an expression involving the error function "erf." When
this expression is evaluated for large WT, expression (22) for
| Var, results.
The expected value of (A7) is the Vary term. The pro-
cedure is as follows. The expectation is moved inside the inte-

gral and the integrand is multiplied out. Three of the four

terms that result are of the form Rxx(v)Rxx(p)h(v+T)h(p+r). The

fourth term is of the form E[x(£)x(E+v)x(t)x(t+p)] h(v+T)h(p+1).

The expectation can be calculated by applying the "moment theorem"

for Gaussian variables", which can be stated in the form

E[aByS8] = E[aB]l El[yS8] + E[ay] E[BS] + E[ad] E[BRy]
(A12)
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where a,B,Y, and § are real zero mean Gaussian random variables.
If (Al2) is applied, one of the three terms that results again
contains the factor Rxx(v)Rxx(p), and just cancels the previous
terms containing that factor. Thus all that remains are the

other two terms that result from applying (Al2), and we arrive

at
T
% - 1
Varx[h(T)] e / /
AT NX .

[Ryy (E-t)Ry (E-t+v=p) + Ryy (t+0-E) Ryy (E+v-t)] (A13)

h(v+t)h(p+1)dpdtdvd§ .

This is the basic result for Vary, and it is not very informative
as it stands. It remains to turn it into a more useful form
in both the continuous and impulsive impulse response cases.

In the continuous case the assumption that Rxx is
narrow relative to h/(WT, >> 1), allows us to make the substitution
Rxx(-) + quo(-) in (Al13). 1If we do this and then integrate

first over pand then over t, the result is

T T=F

Varx[ﬁ(r)] = —lf Jf J/. h(v+t) [h(v+T) + h(t=-v)] dvdg
o =-T v==T-§
: (A14)
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and if we assume for convenience that h is even and evaluate

at the typical point 1=0, the result becomes

P T-£
Var [h(o})] = -1 / he (yldv (A15)

which is Equation (16) of Section II.

In the impulsive case, we have by assumption that h is
impulsive relative to Ryxyx, Whereas in the continuous case we
treated RXX as impulsive relative to h in the limit of interest.
If we return to (Al3), integrate first on v, then on p, and
assume here for simplicity the point target model h(Tt) =

houp (1), we obtain

T

" h
var_[h(1)] = —23—2 / R, (t=E-T)Ryy (t-£+1) dEdt  (Al6)
4T“N, =

If we evaluate at the typical point 1=0, and change variables

we arrive at

2

h T T
var_[(h(o)] = — ./P
X 4T2N 2 J
X E==

=
2
Rxx (n) dndg& (A17)
T n=-T-¢

This can be evaluated just like (All), and Equation (26) results.
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